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LWE

SYSTEM OF m LINEAR EQUATIONS WITH n VARIABLES


a11x1 + a12x2 + · · ·+ a1nxn = t1

a21x1 + a22x2 + · · ·+ a2nxn = t2
...

am1x1 + am2x2 + · · ·+ amnxn = tm

(mod q)

We can write it in the matrix form as follows.
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


︸ ︷︷ ︸

A


x1
x2
...

xn


︸ ︷︷ ︸

x

=


t1
t2
...

tm


︸ ︷︷ ︸

t

(mod q)
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LWE

(IN)-HOMOGENEOUS SYSTEM OF EQUATION

– We use Zqto denote Z/qZ and use the notation a ∈R A to
mean that a is chosen randomly from A.

– Vectors are always treated as column vectors and they are
denoted by small letter bold font.

– Capital bold letter will represent a matrix and AT will be
used to present the transpose of matrix A.

Ax = t (mod q), where A ∈ Zq
m×n (1)

– If t = 0, the system in Eq. (1) is called a homogeneous
system of linear equations. For t ̸= 0, it is termed as
inhomogeneous system of linear equations.
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LWE

SHORTEST INTEGER SOLUTION PROBLEM

Definition 0.1
Given n,m, q, β ∈ Z>0 and

AT :=

 | | |
a1 a2 . . . am
| | |

←− U(Zn×m
q ), (2)

where m > n, q = poly(n) and β ≪ q/2. Find a nonzero
vector z ∈ Zm with z ∈ [−β, β]m such that

ATz ≡ 0 (mod q). (3)
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LWE

Remark
1. In the above Definition 0.1, the use of AT is just for

the notation convenience, which we leverage later. For
simplicity we can use by B := AT.

2. As the number of equations (n) is less than the num-
ber of variables (m), the system in Eq. (2) is under-
determined system.

3. Although the SIS system has many solutions, but what
is the guarantee of having such a small solution.

4. How is the SIS problem connected to lattice ?
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LWE

SIS ..

z

z′

...

[−β/2, β/2]m Zn
q

ψ(x) = Bx

– Size of domain: (β + 1)m; size of co-domain: qn.

– If (β + 1)m > qn , by Pigeonhole Principle, there exists
z1, z2 ∈ [−β/2, β/2]m with z1 ̸= z2 such that Bz1 = Bz2
(mod q). Thus z = z1 − z2 is a SIS solution.

– The SIS problem does not have unique solution. −z
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INHOMOGENEOUS SIS PROBLEM (ISIS)

Definition 0.2
Given n,m, q, β ∈ Z>0 and

AT :=

 | |
a1 . . . am
| |

 $←− Zn×m
q ,b :=

b1
...

bm

 $←− Zn
q , (4)

where m > n and (2β + 1)m ≫ qn. Find a nonzero vector
z ∈ Zm with z ∈ [−β, β]m such that ATz ≡ b (mod q).

Remark
The condition (2β + 1)m ≫ qn is required for a solution to
likely exist.
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EQUIVALENCE OF SIS AND ISIS

Theorem
The following statements hold.

❏ SIS ≤ ISIS.
❏ ISIS ≤ SIS.
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LWE

NORMAL-FORM ISIS (NF-ISIS)

Definition 0.3 (nf-ISISn,m,q,β)
Given m, n, q, β, B $←− Zn×m

q and b $←− Zn
q , find z ∈ Zm+n

q
such that [B|In] z ≡ b (mod q).

Claim 1
nf-ISISn,m,q,β and ISISn,m+n,q,β are equivalent.
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LWE

SIS PROBLEM AND LATTICE

Definition 0.4
(i) A q-ary lattice Λ of dimension m is a lattice satisfying

qZm ⊆ Λ ⊆ Zm.

(ii) Let B ∈ Zn×m, we define a q-ary lattice Λ⊥
q (B), called

the kernel lattice of B, as

Λ⊥
q (B) = {x ∈ Zm : B · x = 0 (mod q)} .

(iii) We define a lattice called, row lattice of B, as

Λq (B) =
{

y ∈ Zm : y = BTs (mod q), for some s ∈ Zn
}
.
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LWE

HARDNESS OF SIS

1

Remark
For m > n log q, the function fB : {0, 1}m 7→ Zn

q defined as
fB(x) := Bx (mod q) is a collision resistant hash function.

1https://web.eecs.umich.edu/˜cpeikert/pubs/LWsE.pdf
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LWE

LWE PROBLEM

Given a system, for example,

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 (mod 17)
13s1 + 14s2 + 14s3 + 6s4 ≈ 16 (mod 17)
6s1 + 10s2 + 13s3 + 1s4 ≈ 3 (mod 17)

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 (mod 17)
9s1 + 5s2 + 9s3 + 6s4 ≈ 9 (mod 17)
3s1 + 6s2 + 4s3 + 5s4 ≈ 16 (mod 17)

...
6s1 + 7s2 + 16s3 + 2s4 ≈ 3 (mod 17)



, (5)

where the approximation error is random and small in size, we
look for a solution, i.e. s = (s1, s2, s3, s4)

T satisfying above.
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LWE

LWE PROBLEM..

– If the System 5 has no solution, it is of no use.
– So we generate such a system starting from a solution, i.e.

from a fixed value of s = (s1, s2, s3, s4)
T, and pick the

coefficients randomly and compute the LHS of Eq. (5) and
add a small random error to obtain the value of the RHS.

– Irrespective of the number of equations in such a system, a
solution is always guaranteed, because we construct the
system using a solution.
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LWE

LWE PROBLEM..

We can convert the System (5) into the following exact system
by introducing the error variables.

14s1 + 15s2 + 5s3 + 2s4 + e1 = 8 (mod 17)
13s1 + 14s2 + 14s3 + 6s4 + e2 = 16 (mod 17)

6s1 + 10s2 + 13s3 + 1s4 + e3 = 3 (mod 17)
10s1 + 4s2 + 12s3 + 16s4 + e4 = 12 (mod 17)

9s1 + 5s2 + 9s3 + 6s4 + e5 = 9 (mod 17)
3s1 + 6s2 + 4s3 + 5s4 + e6 = 16 (mod 17)

...
6s1 + 7s2 + 16s3 + 2s4 + e7 = 3 (mod 17)



(6)
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LWE

LWE PROBLEM..

We can formally write the above system in the matrix form as
follow:

As + e = b (mod q), where A $← Zq
m×n, e← χ, s ∈ Zq

n. (7)

– Given (A,b) ∈ Zq
m×n × Zq

m , satisfying Eq. (7), the LWE
problem is to find the secret s.
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LWE PROBLEM..

– The LWE instance is generated using a LWE-sampler , which
on input s, picks a random vector ai from Zq

n and samples an
error ei for the distribution χ and outputs (ai, bi := ⟨ai, s⟩+ ei).

Secret: s ∈ Zn
q

ei←χ, ai
$← Zn

q
ti ≡ ⟨ai, s⟩+ ei (mod q)

(ai, ti)

– We run the LWE-sampler and collect m LWE-samples and set

A :=


a1
a2
...

am

 ,b :=


b1
b2
...

bm

 , e :=


e1
e2
...

em

 . (8)



LWE PARAMETERS

As + e = b (mod q), where A $← Zq
m×n, e← χ, s ∈ Zq

n.

❏ The notation (n, q, χ)-LWE is used to mean a computational
LWE with following parameters n, q and χ, where
– n represent the length of secret vector. It is called LWE

dimension.
– q ∈ poly(n) is called LWE modulus.
– χ is a probability distribution. The errors (noise), i.e. e, are

sampled from χ.

❏ We write (n, q, α)-LWE to mean
(
n, q,Dαq

)
-LWE, where Dαq

is discrete gaussian distribution with standard deviation αq.
The error parameter α is typically 1/poly(n) and αq >

√
n.

❏ The number of samples(LWE-equations), i.e. m, is usually not
very important. It does not affect much the hardness of LWE.



LWE

MATRIX LWE (MULTI-SECRET EXTENSION OF LWE)

❏ Similar to the matrix-SIS problem, the matrix-LWE problem
replaces secret vector of LWE with a secret matrix . Each
column of secret matrix correspond to the classical LWE
secret.

❏ For a fixed secret matrix S ∈ϕ Zn×k
q , A ∈U Zm×n

q and error
matrix E ∈χ Zm×k

q , we compute

T = AS + E (mod q).

The matrix-LWE problem is to find (S,E), given (A,T).
❏ The decision version of matrix-LWE problem is to distinguish

(A,AS + E) from (A,R), where R ∈U Zm×k
q .
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LWE

MATRIX LWE (MULTI-SECRET EXTENSION OF LWE)..

Let

S =

 | | |
s1 s2 . . . sk
| | |

 and E =

 | | |
e1 e2 . . . ek
| | |


❏ The matrix-LWE problem can be treated as k parallel LWE

instances (A,Asi + ei), with a shared coefficient matrix A.
❏ LWE ≤ Matrix-LWE i.e., matrix-LWE problem is at least as

hard as ordinary LWE problem.
❏ Matrix-SIS and Matrix-SIS problems can be similarly defined.

We can safely assume that these problems are at least as hard
as their classical counterparts.
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LWE

FORMAL DEFINITION OF ID PROTOCOL

Formally an ID protocol Π is a collection of PPT algorithms
(KeyGen,P,V), where P = (P1,P2).

Prover Verifier

I,st:=P1(sk)
Commitment : I

Challenge: c $← Ωpk

Response: z := P2(sk, st, c)

Accept if V(c, z, pk, I) == 1
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LWE

THE SCHNORR IDENTIFICATION SCHEME

Let (G, ·) = ⟨g⟩ be a cyclic group of order q. It is known that the
discrete logarithm problem in G is computationally hard.

Prover Verifier

sk := x, pk := gx where x $← Zq

I := gy where y $← Zq

c $← Zq

z := y + cx (mod q)

Accept if gz · pk−c ?
= I
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LWE

FIAT-SHAMIR TRANSFORM
CONSTRUCTION OF SIGNATURE FROM ID SCHEME

Signer

No Verifier

I,st:=P1(sk)
Commitment : I

Challenge: c := H(I, µ)

Response: z := P2(sk,st, c)

Output the signature: (c, z)
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SCHNORR SIGNATURE SCHEME

(G, ·) = ⟨g⟩ , |G| = q, sk := x← U(Zq) and pk := gx

Signature Generation

Signer

No Verifier

Commitment: I := gkk← U(Zq)

Challenge: c := H(I, µ)

Res.: z := (cx + k) (mod q)

Output the signature: (c, z)

H (gz.(pk)−c, µ)
?
= c

Verification
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LWE

A SIS BASED DIGITAL SIGNATURE ALGORITHM

Algorithm 1 — KeyGen(n,m, k, q)

Input: n,m, k, q
Output: sk, pk

1 S $← {−1, 0, 1}m×k

2 AT $← Zn×m
q , T = AT · S (mod q)

3 return sk := S and pk :=
(
AT,T

)
– Given

(
AT,T

)
, it is computationally hard to recover S.This is

multi-secret (matrix) variant of the ISIS problem.
– Corresponding column vectors of T and S together with AT

will represnt the individual ISIS problems.
– In fact there are k ISIS instances with a shared coefficient

matrix AT.
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A SIS BASED DIGITAL SIGNATURE ALGORITHM..
FIAT-SHAMIR WITH ABORTS FRAMEWORK

Algorithm 2 — Sign(µ, sk, pk)

Input: Signing key sk and message µ
Output: Signature

1 y← Dm
σ ▷ Commitment: ATy

2 c = H
(
AT · y, µ

)
∈ {−1, 0,+1}k ▷ Challenge: c

3 z = Sc + y ▷ Response: z

4 return (z, c) with probability min
(

Dm
σ

MDm
Sc,σ

, 1
)

,

where M ∈ R is such that
Pr

[
MDm

Sc,σ (z) ≥ Dm
σ (z) : z← Dm

σ

]
≥ 1− ε.



A SIS BASED DIGITAL SIGNATURE ALGORITHM..

Algorithm 3 — Verify (pk := (A,T) , µ, (z, c))

if c = H
(
ATz− Tc, µ

)
and ∥z∥ ≤ σ

√
m then

return 1



LWE

LWE BASED DIGITAL SIGNATURE ALGORITHM

Algorithm 4 — KeyGen(n,m, k, q)

1 S ∈ϕ Zn×k
q

2 A $← Zm×n
q , E ∈χ Zm×k

q and T = A · S + E (mod q)
3 return sk := S and pk := (A,T)
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A FRAMEWORK FOR LWE BASED SIGNATURE

Algorithm 5 — Sign(µ, sk, pk)

1 y1, y2 ← Dn
y

2 w = A · y1 + y2 ▷ Commitment: w

3 c = H (µ||w) ∈ {−1, 0,+1}k ▷ Challenge: sparse c
4 z1 = Sc + y1, z2 = Ec + y2 ▷ Response: z1, z2

5 if (z1, z2) leaks dist of S then ▷ ∥zi∥ > bdi

6 restart

7 return (z1, z2, c)

Algorithm 6 — Verify (pk := (A,T) , µ, (z1, z2, c))

1 if ∥zi∥ ≤ bdi ∀i then
2 return H(µ||Az1 + z2 − Tc) ?

= c



LWE

A FRAMEWORK FOR LWE BASED SIGNATURE..

❏ The main draw back of this framework (Algorithm 5) is the
signature size. In comparison to the SIS based schemes, the
signature has an additional vector z2 of dimension n.

❏ This can be resolved using the Bai-Galbraith technique. We
discuss this in the signature scheme given in the Algorithm 7
below.
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LWE BASED DIGITAL SIGNATURE ALGORITHM..

Algorithm 7 — Sign(µ, sk, pk)

1 y← Dn
σ; w = A · y ▷ Commitment: w

2 w1 = HighBits(w)

3 c = H (µ||w1) ∈ {−1, 0,+1}k ▷ Challenge: sparse c
4 if LowBits(w− Ec) > bd then
5 restart

6 z = Sc + y ▷ Response: z
7 if z leaks dist of S then ▷ ∥z∥ > bd1

8 restart

9 return (z, c)
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LWE BASED GIGITAL SIGNATURE ALGORITHM..

Algorithm 8 — Verify (pk := (A,T) , µ, (z, c))

1 w′
1 = HighBits(AZ− Tc)

2 if c = H
(
µ||w′

1
)

and ∥z∥ ≤ bd1 then
3 return 1
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